Early drought stress detection in cereals: simplex volume maximisation for hyperspectral image analysis
نویسندگان
چکیده
Early water stress recognition is of great relevance in precision plant breeding and production. Hyperspectral imaging sensors can be a valuable tool for early stress detection with high spatio-temporal resolution. They gather large, high dimensional data cubes posing a significant challenge to data analysis. Classical supervised learning algorithms often fail in applied plant sciences due to their need of labelled datasets, which are difficult to obtain. Therefore, new approaches for unsupervised learning of relevant patterns are needed. We apply for the first time a recent matrix factorisation technique, simplex volume maximisation (SiVM), to hyperspectral data. It is an unsupervised classification approach, optimised for fast computation of massive datasets. It allows calculation of how similar each spectrum is to observed typical spectra. This provides the means to express how likely it is that one plant is suffering from stress. The method was tested for drought stress, applied to potted barley plants in a controlled rain-out shelter experiment and to agricultural corn plots subjected to a two factorial field setup altering water and nutrient availability. Both experiments were conducted on the canopy level. SiVM was significantly better than using a combination of established vegetation indices. In the corn plots, SiVM clearly separated the different treatments, even though the effects on leaf and canopy traits were subtle. Additional keywords: canopy, imaging spectroscopy, matrix factorisation, non-invasive, pattern recognition, plant phenotyping, unsupervised learning, water stress. Received 24 February 2012, accepted 8 July 2012, published online 28 August 2012
منابع مشابه
3D Gabor Based Hyperspectral Anomaly Detection
Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...
متن کاملEarly Identification of Plant Stress in Hyperspectral Images
In recent years, remarkable results have been achieved in the early detection of weeds, plant diseases and insect pests in crops. These achievements are related both to the development of non-invasive, high resolution optical sensors and data analysis methods that are able to cope with the resolution, size and complexity of the signals from these sensors. Especially hyperspectral cameras are ca...
متن کاملSeparation Between Anomalous Targets and Background Based on the Decomposition of Reduced Dimension Hyperspectral Image
The application of anomaly detection has been given a special place among the different processings of hyperspectral images. Nowadays, many of the methods only use background information to detect between anomaly pixels and background. Due to noise and the presence of anomaly pixels in the background, the assumption of the specific statistical distribution of the background, as well as the co...
متن کاملImpact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images
Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...
متن کاملPre-Symptomatic Prediction of Plant Drought Stress Using Dirichlet-Aggregation Regression on Hyperspectral Images
Pre-symptomatic drought stress prediction is of great relevance in precision plant protection, ultimately helping to meet the challenge of “How to feed a hungry world?”. Unfortunately, it also presents unique computational problems in scale and interpretability: it is a temporal, large-scale prediction task, e.g., when monitoring plants over time using hyperspectral imaging, and features are ‘t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012